Epoch of Reionization data

Here you can find compilations of observational data from the Epoch of Reionization.

Radio-loud quasars at \(z>5.5\) - currently 34 confirmed

Quasar name\(z\)\(S_{147}/\rm mJy\)\(\alpha_{\rm R}\)Reference
J0410-01397.003.50.21Bañados et al. 2024
COS-872596.850.475-0.86Endsley et al. 2023
PSO J172+186.82<8.5-1.31Bañados et al. 2021
ILT J2336+18426.601.38-1.22Gloudemans et al. 2022, 2023
VIK J2318-31136.44<7.0-0.98Ighina et al. 2021
J0803+31386.381.27-1.12Wang et al. 2019, Gloudemans et al. 2022, 2023
P173+486.234.658-0.16Gloudemans et al. 2022, 2023, Bañados et al. 2023
CFHQS J1429+54476.21 -0.67Willot et al. 2010, Frey et al. 2011
CFHQS J0227-06056.20 -0.75Liu et al. 2021
DES J0320-356.13<12.2-1.04Ighina et al. 2023
J1427+33126.12 -0.94Mcgreer et al. 2006, Shao et al. 2022
PSO J0309+276.1064.2-0.44Belladitta et al. 2020, Gloudemans et al. 2023
DES J0322-186.09<6.3-0.61Ighina et al. 2023, Bañados et al. 2023
ILT J1037+40336.078.170.06Gloudemans et al. 2022, 2023
ILT J1650+54576.060.6 Gloudemans et al. 2022
P182+535.990.2410.26Bañados et al. 2023
SDSS J2228+01105.95 -0.39Zeimann et al. 2011, Shao et al. 2022
J2053+00475.92 -0.75Jiang et al. 2009, Bañados et al. 2015
CFHQS J2242+03345.88 -1.07Liu et al. 2021
PSO J352−155.84110.6-0.89Bañados et al. 2018, Connor et al. 2021
ILT J2201+23385.833.56-0.51Gloudemans et al. 2022, 2023
J0836+00545.82 -1.22Fan et al. 2001, Shao et al. 2022
P193-025.80  Bañados et al. 2023
J0002+25505.801.29-1.60Fan et al. 2004, Gloudemans et al. 2023
J1545+60285.780.86-0.79Wang et al. 2016, Gloudemans et al. 2023
ILT J1523+29355.741.30-0.38Gloudemans et al. 2022
J2020-62155.72  Wolf et al. 2024
P207+375.690.485-0.04Gloudemans et al. 2022, Bañados et al. 2023
PSO J055-005.68 -0.75Bañados et al. 2015
PSO J135+165.63 -0.75Bañados et al. 2015
ILT J0912+66585.621.22-0.23Gloudemans et al. 2022, 2023
DES J0209-565.6129.5-0.27Wolf et al. 2024, Ighina et al. 2024
PS J1011-015.587.46-0.40Ighina et al. 2024
PS J0202-175.5743.16-0.65Ighina et al. 2024

RLQSO_zdist   T_evo

Left: Redshift distribution of \(z>5.5\) radio-loud quasars. All of these radio-loud quasars and some information about them (name, redshift, intrinsic flux density at \(147\,\rm MHz\), spectral index between \(1.4\,\rm GHz\) and \(147\,\rm MHz\), references) are listed in the table above. An excel spreadsheet containing this information can be downloaded here.
Right: Temperature evolution at mean density for different X-ray background radiation efficiency, \(f_{\rm X}\), and comparison with observational data (listed below, excel spreadsheet here). The computation of this is described in the Appendix B of Šoltinský et al. 2021. Hence, if you find this useful, please consider citing this paper.

Temperature measurements at \(z\geq5\)

\(z\)\(T(\rm gas\, kinetic)/\rm K\)\(T(\rm spin)/\rm K\)MethodReference
\(10.4\)\(3.2-313.2\)\(4.7-171.2\)21-cm power spectrumHERA 2023
\(7.9\)\(13.0-4768.0\)\(15.6-656.7\)21-cm power spectrumHERA 2023
\(9.1\) \(>2.6\)21-cm power spectrumGreig et al. 2021a
\(8.7\) \(>2.4\)21-cm power spectrumGreig et al. 2021b
\(8.2\) \(>2.1\)21-cm power spectrumGreig et al. 2021b
\(7.8\) \(>1.8\)21-cm power spectrumGreig et al. 2021b
\(7.1\) \(>1.5\)21-cm power spectrumGreig et al. 2021b
\(6.8\) \(>1.4\)21-cm power spectrumGreig et al. 2021b
\(6.5\) \(>1.3\)21-cm power spectrumGreig et al. 2021b
\(5.8\pm0.1\)\(12000\pm2200\) Ly\(\alpha\) transmission spikesGaikwad et al. 2020
\(5.6\pm0.1\)\(10500\pm2100\) Ly\(\alpha\) transmission spikesGaikwad et al. 2020
\(5.4\pm0.1\)\(11000\pm1600\) Ly\(\alpha\) transmission spikesGaikwad et al. 2020
\(5.0\)\(7370^{+1670}_{-1390}\) Ly\(\alpha\) forest power spectrumBoera et al. 2019
\(5.4\)\(5990^{+1520}_{-1340}\) Ly\(\alpha\) forest power spectrumWalther et al. 2019
\(5.0\)\(5330^{+1220}_{-910}\) Ly\(\alpha\) forest power spectrumWalther et al. 2019
\(6.08\pm0.33\)\(5888^{+824}_{-1060}\) Ly\(\alpha\) absorption linesBolton et al. 2012

Neutral Hydrogen fraction measurements at \(z\geq5\)

\(z\)\(x_{\rm HI}\)MethodReference
\(10.00-13.30\)\(0.89^{+0.08}_{-0.21}\)Ly\(\alpha\) equivalent widthsTang et al. 2024
\(8.00-10.00\)\(0.81^{+0.12}_{-0.24}\)Ly\(\alpha\) equivalent widthsTang et al. 2024
\(6.50-8.00\)\(0.48^{+0.15}_{-0.22}\)Ly\(\alpha\) equivalent widthsTang et al. 2024
\(6.55\pm0.05\)\(<0.18\)Damping wingGreig et al. 2024
\(6.35\pm0.05\)\(0.29^{+0.14}_{-0.13}\)Damping wingGreig et al. 2024
\(6.15\pm0.05\)\(0.20^{+0.14}_{-0.12}\)Damping wingGreig et al. 2024
\(6.05\pm0.05\)\(<0.21\)Damping wingGreig et al. 2024
\(5.95\pm0.05\)\(<0.20\)Damping wingGreig et al. 2024
\(5.90\pm0.05\)\(<0.21\)Damping wingGreig et al. 2024
\(6.30\)\(<0.15\)Damping wing in GRBFausey et al. 2024
\(6.87\)\(0.37\pm0.17\)Damping wingĎurovčíková et al. 2024
\(6.46\)\(0.21^{+0.33}_{-0.07}\)Damping wingĎurovčíková et al. 2024
\(6.10\)\(0.21^{+0.17}_{-0.07}\)Damping wingĎurovčíková et al. 2024
\(6.00\pm0.05\)\(0.17^{+0.09}_{-0.11}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.90\pm0.05\)\(0.13^{+0.13}_{-0.07}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.80\pm0.05\)\(0.94^{+0.62}_{-0.64}\times10^{-1}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.70\pm0.05\)\(0.56^{+0.71}_{-0.34}\times10^{-1}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.60\pm0.05\)\(0.16^{+0.25}_{-0.08}\times10^{-1}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.50\pm0.05\)\(0.73^{+2.7}_{-0.35}\times10^{-2}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.40\pm0.05\)\(0.35^{+1.5}_{-0.25}\times10^{-2}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.30\pm0.05\)\(0.51^{+0.80}_{-0.40}\times10^{-3}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.20\pm0.05\)\(0.28^{+0.08}_{-0.06}\times10^{-4}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.10\pm0.05\)\(0.27^{+0.13}_{-0.06}\times10^{-4}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(5.00\pm0.05\)\(0.23^{+0.08}_{-0.04}\times10^{-4}\)CDF of Ly\(\alpha\) effective optical depthGaikwad et al. 2023
\(9.80^{+1.60}_{-1.16}\)\(0.83^{+0.12}_{-0.21}\)Damping wingUmeda et al. 2023
\(7.96^{+0.59}_{-0.28}\)\(0.63^{+0.26}_{-0.36}\)Damping wingUmeda et al. 2023
\(7.45^{+0.10}_{-0.25}\)\(0.54^{+0.32}_{-0.36}\)Damping wingUmeda et al. 2023
\(7.14^{+0.04}_{-0.08}\)\(0.46^{+0.36}_{-0.32}\)Damping wingUmeda et al. 2023
\(10.60\)\(<0.88\)Ly\(\alpha\) equivalent widthsBruton et al. 2023
\(6.70\)\(<0.94\pm0.06\)Dark pixel fractionJin et al. 2023
\(6.50\)\(<0.87\pm0.03\)Dark pixel fractionJin et al. 2023
\(6.30\)\(<0.79\pm0.04\)Dark pixel fractionJin et al. 2023
\(6.90\)\(<0.33\)Ly\(\alpha\) luminosity functionWold et al. 2022
\(7.29\)\(0.49\pm0.11\)Damping wingGreig et al. 2022
\(7.60\pm0.60\)\(0.83^{+0.08}_{-0.11}\)Lyman break galaxiesBolan et al. 2022
\(5.95\pm0.20\)\(<0.29\)Dark gapsZhu et al. 2022
\(5.75\pm0.20\)\(<0.17\)Dark gapsZhu et al. 2022
\(5.55\pm0.20\)\(<0.05\)Dark gapsZhu et al. 2022
\(6.70\pm0.20\)\(<0.25\)Lyman break galaxiesBolan et al. 2022
\(7.30\)\(>0.28\)Ly\(\alpha\) luminosity functionGoto et al. 2021
\(7.30\)\(0.69\pm0.11\)Ly\(\alpha\) luminosity functionMorales et al. 2021
\(7.00\)\(0.28\pm0.05\)Ly\(\alpha\) luminosity functionMorales et al. 2021
\(6.60\)\(0.08^{+0.08}_{-0.05}\)Ly\(\alpha\) emitting galaxiesMorales et al. 2021
\(7.50\)\(0.39^{+0.22}_{-0.13}\)Damping wingYang et al. 2020
\(7.00\)\(0.70^{+0.20,+0.28}_{-0.23,-0.48}\)*Damping wingWang et al. 2020
\(7.90\pm0.60\)\(>0.46\)Lyman break galaxiesMason et al. 2019
\(7.50\)\(0.21^{+0.17}_{-0.19}\)Damping wingGreig et al. 2019
\(7.54\)\(0.56^{+0.21}_{-0.18}\)**Damping wingBañados et al. 2018
\(7.54\)\(0.60^{+0.20,+0.36}_{-0.23,-0.45}\)*Damping wingDavies et al. 2018
\(7.09\)\(0.48^{+0.26,+0.47}_{-0.26,-0.46}\)*Damping wingDavies et al. 2018
\(7.00\)\(0.59^{+0.11}_{-0.15}\)Lyman break galaxiesMason et al. 2018
\(7.08\)\(0.40^{+0.21,+0.41}_{-0.19,-0.32}\)*Damping wingGreig et al. 2017
\(6.10\)\(<0.37\)Dark pixel fractionMcGreer et al. 2015
\(5.90\)\(<0.06\)Dark pixel fractionMcGreer et al. 2015
\(5.60\)\(<0.04\)Dark pixel fractionMcGreer et al. 2015

The uncertainties come from the 68th percentiles. However there are some exceptions:
\(*\) the first uncertainty comes from the 68th percentile while the second value comes from the 95th percentile.
\(**\) the uncertainty comes from the 95th percentile.
The excel file containing this data can be accessed here.

If you know about any data that would be appropriate to add here, please do not hesitate to let me know! Thank you!

Last website update - 19.08.2024